- Home
- Standard 11
- Physics
3-1.Vectors
medium
Find angle between $\vec A = 3\hat i - \hat j + 4\hat k$ and $Z-$ axis
A
${\tan ^{ - 1}}\,\left( {\frac{{\sqrt {22} }}{4}} \right)$
B
${\tan ^{ - 1}}\,\left( {\frac{{\sqrt {10} }}{4}} \right)$
C
${\sin ^{ - 1}}\,\left( {\frac{{\sqrt {10} }}{4}} \right)$
D
${\sin ^{ - 1}}\,\left( {\frac{4}{{\sqrt {26} }}} \right)$
Solution
$\cos \theta=\frac{\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}}{\mathrm{AB}}=\frac{(3 \hat{\mathrm{i}}-\hat{j}+4 \hat{\mathrm{k}}) \cdot(\hat{\mathrm{k}})}{\sqrt{(3)^{2}+(-1)^{2}+(4)^{2}} \sqrt{(1)^{2}}}=\frac{4}{\sqrt{26}}$
Base $=4,$ hypotenuse $=\sqrt{26} \cdot$ perpendicular $=\sqrt{10}$
$\tan \theta=\frac{\sqrt{10}}{4}, \quad \theta=\tan ^{-1}\left(\frac{\sqrt{10}}{4}\right)$
Standard 11
Physics
Similar Questions
For component of a vector $A =(3 \hat{ i }+4 \hat{ j }-5 \hat{ k })$, match the following colum.
Colum $I$ | Colum $II$ |
$(A)$ $x-$axis | $(p)$ $5\,unit$ |
$(B)$ Along another vector $(2 \hat{ i }+\hat{ j }+2 \hat{ k })$ | $(q)$ $4\,unit$ |
$(C)$ Along $(6 \hat{ i }+8 \hat{ j }-10 \hat{ k })$ | $(r)$ $0$ |
$(D)$ Along another vector $(-3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ | $(s)$ None |
medium