Find angle between $\vec A = 3\hat i - \hat j + 4\hat k$ and $Z-$ axis

  • A

    ${\tan ^{ - 1}}\,\left( {\frac{{\sqrt {22} }}{4}} \right)$

  • B

    ${\tan ^{ - 1}}\,\left( {\frac{{\sqrt {10} }}{4}} \right)$

  • C

    ${\sin ^{ - 1}}\,\left( {\frac{{\sqrt {10} }}{4}} \right)$

  • D

    ${\sin ^{ - 1}}\,\left( {\frac{4}{{\sqrt {26} }}} \right)$

Similar Questions

A vector $\overrightarrow{ A }$ points vertically upward and $\overrightarrow{ B }$ points towards north. The vector product $\overrightarrow{ A } \times \overrightarrow{ B }$ is

$\hat i.\left( {\hat j \times \,\,\hat k} \right) + \;\,\hat j\,.\,\left( {\hat k \times \hat i} \right) + \hat k.\left( {\hat i \times \hat j} \right)=$

If $\overrightarrow {\rm A} = 2\hat i + 3\hat j - \hat k$ and $\overrightarrow B = - \hat i + 3\hat j + 4\hat k$ a unit vector perpendicular to both $\overrightarrow A $ and $\overrightarrow B $ will be

The values of $x$ and $y$ for which vectors $\vec A = \left( {6\hat i + x\hat j - 2\hat k} \right)$ and $\vec B = \left( {5\hat i - 6\hat j - y\hat k} \right)$ may be parallel are

Why the product of two vectors is not commutative ?